1.1. Основные характеристики запоминающих устройств

Запоминающие устройства (ЗУ) характеризуются рядом параметров, определяющих возможные области применения различных типов таких устройств. К основным параметрам, по которым производится наиболее общая оценка ЗУ, относятся их информационная емкость (E), время обращения (T) и стоимость (C).

Под информационной емкостью ЗУ понимают количество информации, измеряемое в байтах, килобайтах, мегабайтах или гигабайтах, которое может храниться в запоминающем устройстве.

Как известно, приставки кило-, мега- и гига- допускают неоднозначную трактовку в связи с различием их понимания в общенаучном и специфическом при использовании двоичной системы счисления смыслах. Так, в общем смысле приставка "кило" соответствует 103, "мега" – 106, "гига" – 109 , а "тера" – 1012 (на подходе "пета" и "экзи") . В то же время, близкие по звучанию и смыслу двоичные аналоги этих величин: К-, М-, Г- и Т- обозначают 210 (1024), 220 (1048576), 230 (1073741824) и 240 (1099511627776), что только приблизительно соответствует перечисленным выше степеням 10. Поэтому при указании емкости одного и того же устройства памяти, например жесткого диска, в Гбайтах и миллиардах байт, могут наблюдаться определенные различия.

Обычно информационная емкость учитывает только полезный объем хранимой информации, который не включает объем памяти, расходуемый на служебную информацию, контрольные разряды или байты, резервные области (например, интервал между концом дорожки диска и ее началом), дорожки синхросигналов и пр.

Время обращения к ЗУ различных типов определяется по-разному. В качестве примера можно рассмотреть оперативные ЗУ и жесткие диски.

Оперативные ЗУ обычно реализуются как ЗУ с произвольным доступом (см. Классификация ЗУ по функциональному назначению ). Это означает, что доступ к данным, физически организованным в виде двумерного массива (матрицы элементов памяти), производится с помощью схем дешифрации, выбирающих нужные строку и столбец массива по их номерам (адресам), как показано на рис.1. Поэтому время Tобр обращения к ним определяется, в случае отсутствия дополнительных этапов (таких, например, как передача адреса за два такта), временем срабатывания схем дешифрации адреса и собственно временами записи или считывания данных.

Draw_1: Random Access Matrix

Емкости оперативных ЗУ этого же периода составляли для небольших ЭВМ порядка 256 Мб – 2 Гб.

Процесс обращения (чтения или записи) к жесткому диску показан на рис.2. Он включает в себя 3 этапа: перемещение блока головок чтения/записи на нужную дорожку (а), ожидание подхода требуемого сектора под головки чтения/записи (б) и собственно передача данных, считываемых с диска или записываемых на него (в). Каждый из этих этапов занимает определенное время, входящее в общее время обращения к диску. Все этапы так или иначе связаны с механическими перемещениями, поэтому их времена сравнительно велики и составляют величины порядка единиц миллисекунд.

Draw_2: Access to HDD

Время перемещения блока головок, обычно называемое изготовителями дисков временем поиска (seek time), зависит от количества дорожек, на которое надо переместить блок головок. Минимальное время затрачивается на перемещение блока головок на соседнюю дорожку (цилиндр). Это время составляет порядка 1-2 мс. Максимальное время требуется на перемещение блока головок от крайней дорожки к центральной или наоборот. Это время может составлять порядка 15-20 мс. Среднее время поиска (перемещения головок) составляет порядка 8-10 мс.

Время ожидания поlвода файла (точнее, его первого сектора) под блок головок производители называют также временем задержки (latency time). Это время в среднем равно времени половины оборота диска, что, например, при скорости вращения (шпинделя) диска 7200 оборотов/мин, или 120 оборотов/с, составляет 4,2 мс.

Наконец, время передачи данных зависит от количества передаваемых данных (размера файла, если он располагается целиком на последовательных секторах одной дорожки диска) и скорости передачи. Из-за зависимости этого времени от размера файла и его размещения на диске в качестве характеристики диска используют скорость передачи данных (transfer rate). Эта скорость определяется как параметрами тракта связи с ЭВМ, так и скоростью считывания данных с диска или записи данных на диск. Обычно пользуются именно этими параметрами, так как каналы передачи достаточно быстрые, чтобы снижать скорость передачи, а диски имеют буферные ЗУ (кэш диска), скорость обмена данными с которым заметно превышает скорость считывания с диска или записи на диск.

В свою очередь, скорость обмена с диском определяется скоростью его вращения и плотностью записи информации на него. Обе эти величины непрерывно возрастают с развитием технологий изготовления жестких дисков. В начале 2000 годов скорости вращения дисков составляли порядка 5-15 тыс. оборотов/мин. Плотность записи информации на диск удваивалась примерно каждый год – полтора. К концу 2002 г. плотность записи достигала 45 Гбит/кв.дюйм. Это позволяло размещать на одной пластине диска до 60 Гбайт данных (при использовании обеих сторон пластины). При такой плотности, с учетом примерно десятикратного различия продольной и поперечной плотности записи, на одной стороне пластины имелось порядка 50-60 тыс. дорожек, каждая из которых в среднем позволяла записать 500-600 Кбайт информации.

Максимально достижимая скорость обмена с пластиной при этих условиях составляла до 700 Мбит/с, а средняя скорость обмена данными с диском находилась в пределах 30-50 Мбайт/с.

Стоимость запоминающих устройств также представляет собой важную характеристику. Именно она является одной из причин иерархической организации памяти ЭВМ.

Действительно, хорошо иметь быструю и емкую память. Нужно, чтобы она была и относительно дешевой. Понятно, что эти параметры противоречивы. Поэтому в ЭВМ и строят иерархию памяти, на вершине которой (ближе всего к процессору) находятся маленькие быстродействующие, но дорогие ЗУ, а внизу – большие, дешевые, но медленные.

Определения дорогие и дешевые понимаются не в абсолютном, а в относительном измерении, исходя из стоимости хранения единицы информации (удельной стоимости) в ЗУ. На тот же период времени стоимость хранения 1 Мбайта информации в оперативных ЗУ и на жестких дисках составляла порядка 10-15 центов и 0,1-0,2 цента соответственно, т.е. различалась примерно в 100 раз.

Конечно, помимо емкости, времени обращения и стоимости, существуют и другие характеристики памяти такие, как надежность, энергопотребление, габариты, время хранения информации, способность сохранять ее при отключении питания и другие. При определенных условиях эти характеристики могут иметь важное значение. Например, для ноутбуков энергопотребление и габариты играют существенную роль, что при обеспечении требуемых значений этих показателей приводит к более высокой стоимости устройств такого класса. Напротив, для серверов на первый план выдвигается требование надежности сохранения информации.

[ Назад  Начало раздела  Далее  Содержание]